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Abstract

The natural environment is burdened with a broad range of toxic chemicals, and
there is a need to develop a tool that can accelerate the pace at which we learn how
chemicals impact disease. This work developed an artificial neural network (ANN)
based model that constructed chemical-disease relationships for chemicals found in the
Comparative Toxicogenomics Database. A new chemical classification system, based on
the molecular weight, hydrogen donors, and hydrogen acceptors, was created to identify
chemicals with a unique number that is directly related to these structural properties of
the chemical. Diseases were grouped into 27 categories and the chemical-disease
associations were made between the chemical and its associated disease category. The
ANN model was successfully trained and tested to associated 75 chemical with the 27
disease categories. Simulations with training-validation-testing ratios of 70-15-15 percent
produced coefficients of determination equal to 0.99, and the Levenberg-Marquardt
backpropagation function provided the best network performance. To help validate the
model, the ANN was also used to evaluate chemical-disease relationships for three
uncurated chemicals. Results showed that ANNs have the potential to predict disease
associations for uncurated chemicals and to guide research for curated chemicals that

may require further toxicological testing.
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ARTIFICIAL NEURAL NETWORK PREDICTION OF CHEMICAL-DISEASE
RELATIONSHIPS USING READILY AVAILABLE CHEMICAL PROPERTIES

I. Introduction

The natural environment is burdened with a broad range of toxic chemicals,
including petroleum products, metals, pesticides, pharmaceutical compounds, organic
solvents, and numerous other hazardous substances. Most of these chemicals have the
potential to cause ecological harm and they also pose significant risks to human health.
Toxicological testing has helped reveal the connections between specific chemicals and
health risk factors, but experimental testing on indicator species is expensive and time
consuming, while testing on humans is illegal and unethical. There is a need to develop a
tool that can accelerate the pace at which we learn how chemicals impact disease. Such a
tool would allow the benefits of a given chemical to be weighed against the risks to the
environment and public health.

Risks to the environment and to public health are governed by the interactions
between chemicals, environmental factors, and the genes that modulate important
physiological processes, and there are large databases containing information that can be
used to advance fundamental understanding. For example, the Comparative
Toxicogenomics Database (CTD) is a publicly available research resource that includes
curated data describing cross-species chemical-gene/protein interactions and chemical-
and gene—disease associations. The CTD contains over 800,000 chemical-gene

interactions, more than 12,400,000 gene-disease associations, and over 1,300,000



chemical-disease associations (Davis et al., 2013). These data can be used to develop
insights into complex chemical—-gene and protein interaction networks.

The existing CTD data can be used to develop a model than can predict the effect
of chemical structure on public health risk. For such a model, Artificial Neural Networks
(ANN) can be used. ANNSs are flexible mathematical models that are capable of
identifying complex nonlinear relationships between input and output data sets. These
models are especially useful when it is too difficult to use conventional mathematical
equations. ANNSs recognize patterns and they work by converting input data into
numerical values that are propagated through a network of neurons. The network of
neurons processes the data given to the network by attempting to find patterns in the data
so that inputs can be correlated outputs. ANNSs have been used for a wide range of
environmental and public health applications and they are ideal when there is a large
amount of data available for ANN development.

One obstacle in investigating chemical-disease relationships is the lack of a useful
chemical classification system; one that uses specific chemical characteristics to assign
chemical identification numbers. Currently, several individual classification systems
provide unique classification numbers for each chemical; however, these numbers are not
related to the properties of the chemical and often are randomly assigned. Therefore,
developing a modified chemical classification system is an important task for the
development of chemical—disease relationships. It would permit policy makers and
scientists to anticipate diseases that would be likely associated with new chemicals or

existing chemicals that require further testing.



The Environmental Protection Agency (EPA) and National Science Foundation
(NSF) have expressed interest in chemical-disease relationships for the purpose of
characterizing chemical lifecycles. In 2013, as part of a joint solicitation, the EPA and
NSF requested research be conducted that studies the lifecycles of synthetic chemicals,
including a focus on their impacts on human health and the ecology (National Science
Foundation, 2013). ANNs could provide an appropriate tool to investigate chemical life-
cycles, especially when analyzing chemical-disease associations. Understanding how
chemicals interact in a given environment and how they could affect surroundings play a
role in the lifecycle of a chemical.

The EPA could also use an ANN tool to add important chemical association
information to the Toxic Substances Control Act (TSCA) inventory. When the TSCA
was implemented in 1976, over 62,000 chemicals were grandfathered into the inventory
without any knowledge of their potential affects (Environmental Protection Agency,
2013). In the past 38 years, the number of chemicals in the TSCA inventory has grown
to over 84,000, yet only 4 chemicals are specifically addressed within the TSCA
document and only a few others have been regulated or banned in the United States
(Congressional Digest, 2010). With so many chemicals with unknown chemical-diseases
associations existing in the TSCA inventory, a simple analytical tool to generate
chemical-disease association predictions may provide valuable information for
potentially unknown harmful chemicals. Using a predictive ANN to generate potential

chemical impacts could increase the usefulness of the TSCA.



Significance of Research

With the ability to generate predictions of unknown chemical-disease
relationships, the ANN provides the possibility of being a useful tool for researchers in
the science and medical fields investigating the potential effects of new chemicals. A
network that could point researchers towards the effects a chemical will have could help
save valuable time and resources when it comes to creating and testing chemicals. When
used as a screening and prioritization tool, an ANN may be useful in influencing where
researchers begin testing and analyzing chemicals. As the network is expanded through
future research, it could potentially be used to predict potential interactions other than just
chemical-disease associations. Refining the classification number and training the
network with different outputs could allow the network to predict how chemicals may
interact if released in to a natural environment. An ANN with this type of capability
could be adjusted to work with the Environmental Protection Agency and National
Science Foundation’s research request for using networks to characterize the lifecycle of
chemicals. Additionally, valuable information could be added to the TSCA inventory
providing data on potentially harmful chemicals which were grandfathered into the
system with no known associations. The true significance of using an ANN to predict
chemical-disease associations will become more evident as further research and testing is
done to refine the ANN model. As the model becomes more efficient and produces more
accurate results, it will be more useful to the scientific community in the screening of

new chemicals.



Implications of Research

After investigating the research objectives and analyzing the results of the ANN
simulations, it can reasonably be assumed that a MATLAB ANN can be used to analyze
chemical and disease data and formulate a network that can possibly predict future
chemical-disease associations. The creation and use of a new chemical classification
system with an ANN was also demonstrated and results show that a new classification
method could be advantageous when working with chemical-disease interactions.
Although the classification system developed worked for the simulations conducted in
this research, it does not mean that the classification represents the best method or uses
the most appropriate chemical properties in the classification number. However, it does
indicate that a classification number based on chemical attributes is certainly a possibility
and be useful in research and experimentation. Similar to the classification system, the
ANN shows the potential for developing networks that can predict chemical-disease
relationships; however, the current network may not provide the best performance
possible. Training-validating-testing (TVT) ratios and training functions play important
roles in the development of the ANN and show strong correlation to how well the
network performs, but there are many other factors that can be edited and tested that
could improve network further. Using data from the CTD shows that a network could be
created on a larger scale and not be bound to specific groups of chemicals or diseases.
Combining the CTD data with the new classification system and ANN confirms that
chemical-disease association prediction can be accomplished on a large scale, not just in
smaller quantitative structure-activity relationship research studies.
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Il. Literature Review

The relationships between chemical properties and disease

Several studies have explored the relationship between chemical properties and
health risk factors or physiological impacts on indicator species. For example, Schultz et
al., 2002 discovered positive relationships among 120 different aromatic compounds and
estrogenicity based on the number of hydrogen bond donating groups in the aromatic
compound. They also found that the number of hydrogen bond accepting groups was
negatively linked to estrogenicity. Fang et al., 2001 looked at 230 natural and synthetic
steroids and discovered that estrogenicity related negatively to the number of hydrogen
bond donating groups in the steroid. They also discovered that estrogenicity was
positively linked to the octanol-water partition coefficients of the steroids. Lipinski et al.,
2012 expanded on this research looking at 2500 organic compounds and discovered
similar results to that of Fang et al. Quantitative structure activity relationships are not
limited to only estrogenicity, as they have been used to model numerous other chemical-
disease relationships. Ren, 2002 found that hydrophobicity and hydrogen bonds could be
used to predict the toxicity of a chemical and Svetnik et al., 2003 determined molecular
weight could be used to predict a chemical’s biological activity. Wu et al., 2013 also
discovered that hydrophobicity and electron density can predict antibacterial qualities of
chemicals. This previous work shows that structural properties of chemicals can be used

to predict associations between chemicals and other factors.



Using Artificial Neural Networks in medical research

ANN:Ss are flexible, mathematical models capable of identifying complex,
nonlinear relationships in data sets. They are capable of discovering patterns in large
amounts of data and have been shown to be useful in environmental and public health
applications (Beale et al., 2013). ANNSs take a set of input and output data and develop
correlations between the two data sets by using hidden layers of mathematical formulas,
weights, and biases. The formulas are determined by the type of training function
specified to be used by the network during the simulation. The weights and biases are
placed on the input data as the network is tested and they can be adjusted to help improve
network performance. After testing the known input and output data with the training
function formulas, weight, and biases, the network derives outputs that are compared to
the actual outputs.

When setting up an ANN, two important parameters of a network are the TV ratio
and the training function. TVT ratios establish how the data is divided for use in training,
validating, and testing the network model. Training functions are the algorithms that
determine how the network trains the data while it attempts to find patterns and
correlations between the input and output data (Beale et al., 2013). The use of
appropriate TVT ratios is important for optimizing network performance because the
ratios will determined if a network is undertrained or overtrained. Seguritan et al., 2012
found that testing different training and validation ratios did not provide any significant
difference in the overall network performance, but adjusting the testing ratio did show

potential for increasing performance. Ahmad and Gromiha, 2003 calculated high ANN



prediction accuracy rates when using TVT ratios that used a majority percentage of the
data training the network and Guyon, 1997 found that the ratio of validation data to
training data should be between 10 and 25 percent. Singh et al., 2011 compared three
training functions in a neural network and found the trainbr function provided the best
network performance, but that more than three functions should be tested to truly find the
function that best fits the network. Guenther and Frauke, 2010 showed that resilient
backpropagation functions performed well in regression ANNs but indicated only three
types of functions were tested and other functions may provide similar or better results.
Ferrari and Stengel, 2005 found that algebraic training functions may be used to create
linear correlations from non-linear datasets with multiple input and output variables.

Overall, research has shown that ANN can be useful in diagnostic and predictive
applications when provided the proper data. ANNSs have been used in the medical
community to address concerns related to specific diseases or groups of diseases. For
example, Stephan et al., 2009 used ANNSs to distinguish between benign and malignant
prostate cancer and Santos-Garcia et al., 2004 used ANNSs to predict morbidity from
cardio respiratory failure as a result from non-small cell lung cancer pulmonary resection.
Curtis et al., 2001 used ANNS to associate genotypes with common human diseases and
Sheppard et al., 1999 used ANNSs to predict the risks of contracting cytomegalovirus
disease after kidney transplantations. Nguyen et al., 2002 used ANNSs to predict patient
susceptibility to meningitis.

Nearly all of the data used in the ANN analyses for clinical and medical research

comes from hard to obtain data or data that requires a great deal of effort to acquire. This



hard to obtain data often requires additional testing and information gathering to acquire
the data needed for the ANN. This often requires a great deal of time and resources from
the medical personnel. For example, Song et al., 2005 used ultrasound image results and
interpretations from physicians to investigate the ANN diagnosis of breast masses and
Viazzi et al., 2006 had to obtain cardiac and vascular ultrasound information from
physicians and adjust it to work in the ANN model. While useful in medical the medical
field, many ANN applications require additional data or testing to successfully use the

network.

ANN in diagnosis

ANNSs have shown potential to be used in helping doctors diagnose lung diseases
by analyzing clinical and radiological factors in addition to relying on chest radiographs.
Abe et al., 2002 and Abe et al., 2004 presented evidence that radiologists could use ANN
output data, in addition to x-rays, to diagnose lung diseases. Their findings indicated that
using clinical factors in an ANN could potentially prove to be more useful when
diagnosing interstitial lung disease. Ashizawa et al., 1999 also found that ANNSs used by
radiologists increased the accuracy of lung diseases diagnosis. Research performed by
Feng et al., 2012 discovered that ANN proved capable of diagnosing lung cancer as well
differentiating it from benign lung disease, gastrointestinal cancers, and control patients
by analyzing various blood levels in patients.

ANNSs are not only limited to be used in diagnosing lung disease. In 2009,

Babaoqlu et al. concluded that ANN could be used to analyze exercise stress testing data



to correctly diagnose coronary artery disease as well predict the locations of lesions near
the heart. Lux et al., 2013 found that hereditary hemorrhagic telangiectasia could be
diagnosed by obtaining mid-infrared spectroscopy from blood plasma and analyzing the
data through an ANN instead of conducting the typical and costly clinical tests. Matsuki
et al., 2002 found that by taking clinical parameters and radiologic findings from high-
resolution CT scans and analyzing the data with an ANN, that radiologists could
accurately diagnose nodules as benign or malignant without having to conduct further
invasive testing on the patients. Arterial blood gas values were predicted based off of
venous blood gas values in an effort to better assess patients with acute exacerbations of
chronic obstructive pulmonary disease (AECOPD) by Raoufy et al., 2011. Arterial blood
gas values provide the best diagnostic evidence of AECOPD but can be difficult to
obtain. Using an ANN to correlate venous blood gas values to arterial blood gas values
provided an accurate method to detect AECOPD hypercarbia. Deng et al., 1999 found
that when ANNs were combined with MRIs, physicians were able to successfully
diagnose Alzheimer’s disease in potential patients and Matake et al., 2006 found that the
accuracy of radiologist diagnosis of hepatic masses increased when ANN were used to
analyze nine clinical parameters from computed tomographic scans. Hamilton et al.,
2006 successfully used ANNs to discriminate between parkinsonian syndrome and
essential tremors based on the ratio of tracer accumulation between the caudate nucleus
and putamen. This model provided a tool to diagnose parkinsonian syndrome early

without confusing it with essential tremors.
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ANN in predictions

In addition to aiding medical professionals in diagnostics, ANNSs have also been
shown to be useful in predicting diseases as well. The different between predicting and
diagnosing diseases is diagnosing is identifying a disease or condition that is already
present. Predicting uses current data to forecast potential future disease or conditions
without any current symptoms. For example, Biglarian et al., 2012 found that ANNs
were useful is predicting distant metastasis in colorectal patients and that the ANN
models were more accurate that logical regressions models. Colak et al., 2008 created an
ANN model that highlighted promising results for predicting coronary artery disease
without the need to invasive testing for diagnosis. The work of Cucchetti et al., 2007
demonstrated that ANNs were more accurate than the current model for end-stage liver
disease used to prioritize patients with liver cirrhosis for donor organs and Ghoshal et al.,
2008 used ANN to predict the mortality of patients with cirrhosis of the liver. Using
ANNs for this could help doctors better prioritize transplant candidates, potentially
reducing the mortality rate of patients waiting for donor organs. Dagli et al., 2012 used an
ANN to predict anemia in patients with Behcet disease. Their model provided a 99%
correct anemia prediction rate using prohepcidin and hepcidin levels as well as several
other common blood parameters. EI-Solh et al., 1999 found that ANNs were more
accurate in predicting pulmonary tuberculosis that medical assessments performed by
physicians. Recurrence of non-invasive transitional cell carcinoma of the urinary bladder
was predicted in an ANN model by Fujikawa et al., 2003 and the model proved to be

more accurate than current prognosis techniques. Matsui et al., 2002 developed an ANN
11



model that showed promising results for being able to replace old methods of predicting
prostate cancer in Japanese men. Although in need of further refinement, the model
could be used to predict the pathological stage of prostate cancer. Ning et al., 2006
predicted levels of hypertension using physician and patients comment data in an ANN.
ANNSs were shown to be a possible tool for predicting Graves’ disease in patients as a
result of antithyroid drug withdrawal by Orunesu et al., 2004 and Salvi et al., 2002 found
that ANN could be used to predict the progression of thyroid-associated ophthalmopathy.
The articles discussed in this literature review represent a sample of the articles
that can be found on these topics. It is meant to provide an understanding of previous
work conducted with chemical-disease relationships and ANNs in the scientific and
medical research communities by showcasing relevant research. From analyzing
previous research related to chemical-disease relationships and the use of ANNs in
investigating chemical-disease associations, it can be concluded that with proper set-up,
ANNSs can be used to predict potential disease associations from various variable inputs.
These previous efforts help to identify and define the research objectives for optimizing

ANN performance and then using the network to predict chemical-disease associations.
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I11. Research Objectives

From the analysis of the literature review, several areas of research became
apparent that would attempt to solve the issues presented in Chapter 1. The research

objectives of this thesis are as follows:

1) What chemical structural characteristics should be used to create a new
chemical classification system capable of being used in identifying chemical-
disease associations? The first problem addressed will be the creation of a
new chemical classification system. Reviews of previous research efforts will
be used to highlight potential chemical properties that could be successfully

used to create a new numbering system.

2) How can MATLAB ANN capabilities be used to connect chemicals to
diseases using chemicals structural properties? Before a predictive ANN can
be created in MATLAB, it needs to be shown that the MATLAB ANN can
properly analyze the input and output data of the new chemical classification
system obtained from the CTD. Showing that the MATLAB ANN can be used
for this purpose establishes the foundation needed to continue on to the next

phase of research.

3) What TVT ratio provides the best network performance? Investigating the

best TVT ratio to use with the chemical and disease data in the network is

13



4)

5)

important so that the network performs at the highest level possible. If a

suboptimal TVT ratio is used, the predictability of the network will suffer.

What training function provides the best network performance? A proper
training function used in the network is equally as important as a proper TVT
ratio. The training function establishes the algorithm the network will use to
train the data and update the weights and biases of the network. There are
several training functions to choose from in the MATLAB ANN and each one
trains the data differently. Determining the proper training ratio increases the

prediction potential of the network.

How can the network be used to predict diseases that are linked to uncurated
chemicals? The final step in addressing the problem statement is determining
if the network can be used to accurately predict disease outputs. This will be
done by creating an ANN with known chemical-disease relationship using
curated chemical data from the CTD. Then, uncurated chemicals will be
entered into the system and the outputs will be analyzed to see if the model

can generate valid predictions.

14



IV. Methodology

Overview

This chapter will discuss the methods used to acquire, test, and analyze the data in
attempting to show that a predictive ANN model can be created to correlate chemicals to
unknown disease associations. The data source and required data information will be
explained as well as how the ANN will be used to analyze the data. The three
simulations needed to complete the research will be addressed as well as how the output

data will be analyzed to obtain the final results.

Chemical Classification System

A new numbering system was created that attempted to incorporate specific
qualities of the chemical into the classification number while still ensuring that each
chemical would have an individual and unique number. From investigating previous
research of quantitative structure activity relationships, several studies demonstrated that
readily available physical properties of chemicals could be used to predict a chemical’s
effect when used in an appropriate model (Schultz et al., 2002, Fang et al., 2001, LipinskKi
etal., 2012, Ren, 2002, Svetnik et al., 2003). Using readily available chemical properties
allows for a chemical classification system number to be created without extensive
testing or data collecting.

Three chemical traits that proved useful, particularly in a chemicals effect on

estrogenicity, were molecular weight, hydrogen donors, and hydrogen acceptors (Lipinski

15



etal., 2012). In addition to being successfully used in previous research, these three
chemical traits are also fairly simple to obtain. Without performing complex testing, the
molecular weight can be easily calculated from the chemical formula while the hydrogen
acceptors and donors are added up based on the number of lone pair electrons and atoms
bonded to at least one hydrogen atom. For example, the oxygen atom in water has one
free pair of electrons so water has one hydrogen acceptor. The oxygen atom in water is
also connected to two hydrogen atoms so water has one hydrogen donor.

The numbering system created gave each chemical a ten-digit number that was
exclusive to that specific chemical. The first six digits of the number correspond to the
molecular weight of the chemical including two decimal places. The seventh and eight
digits represent the number of hydrogen acceptors and the ninth and tenth digits represent
the number of hydrogen donors. Figure 1 shows an example of how the new chemical
classification number is created for water. Water has a molecular weight of 18.015
g/mol, 1 hydrogen acceptor, and 1 hydrogen donor. Inputting these numbers into the new

classification system, the new number generated for water is 0018020101.

16



Molecular Weight | | Hydrogen Acceptors | | Hydrogen Donors

18.015 | |
001802 01 01
0018020101

Figure 1: New Chemical Classification Example

The molecular weight in the classification number is assigned to the hundredths
place to provide sufficient accuracy and uniqueness for identifying the chemical. The
number of hydrogen acceptors and hydrogen donors further reduce the possibility that

two different chemicals would have the same classification number.

Data

The data used in the MATLAB simulations comes from the online CTD. The

CTD is developed and maintained through a joint effort between North Carolina State
University and Mount Desert Biological Laboratory and also receives financial support
from the National Institute of Environmental Health Sciences. The primary goal of the
CTD is to advance the understanding of the effects of environmental chemicals on human
health through studying the relationships between chemicals, genes, and diseases. This
online database is a collection of curated and uncurated data containing information for
chemicals, genes, and diseases. Curated data is data that has peer-reviewed, scientific

research to prove existence of the data relationship (i.e. chemical-disease association).
17



Uncurated data does not have any literature showing interactions with other factors. The
CTD contains over 800,000 chemical—gene associations, 12,400,000 gene-disease
associations, and 1,300,000 chemical-disease associations with additional data and
updates made weekly. Chemicals, genes, and diseases that are curated have been
organized based on documented scientific research. Uncurated chemicals, genes, and
diseases do not have the support of peer-reviewed research. While uncurated data do not
have documentation to prove associations, the CTD does list possible associations
through inferences. An inferred association between a chemical and a disease is
established with a curated chemical-gene and gene-disease relationship. For example,
acetone has a curated relationship with the catalase (CAT) gene and the CAT gene has
been shown to affect asthma in humans. There is no direct link between acetone and
asthma but it can be inferred through the curated relationships with the CAT gene (Davis
etal., 2013)

The CTD website offers several organization and research functions that can be
used to explore how the chemicals, genes, and diseases interact and related to one
another. These functions allow users to research specific categories within the data and
specify particular relationships of interest. In addition to the search functions, user can

download entire sets of the database to use in simulations and research.

Chemicals

The chemicals used in the MATLAB ANN simulations were randomly chosen

from the CTD. As chemicals were selected, they were checked to make sure each
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chemical was curated so that known disease associations existed to use in the network.
Chemicals were also traced back to their most common ancestor chemical if they were a
descendant. Descendant chemicals were traced back to a common ancestor to ensure
there was enough data to use in the simulations. Once the ancestor chemicals were
determined, the molecular weight, hydrogen acceptors, and hydrogen donors were
determined and the new classification system number was generated for each chemical.
Table 1 shows the list of chemicals used in the simulations, along with the classification
number, chemical formula, and chemical structure diagram. The chemical formulas and

structure diagrams were included to show the diversity of the chemicals used.
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Table 1: Chemical Information

New

Chemical Name Classification I\ég:—?ﬁﬂﬁr Chemical Structure
Number
Acetone 0058080100 C3HesO )\
0
JFH O—py
H
H—N ! H
. . N /—‘—-0
Aciclovir 0225200804 CgH11NsO3 ?” P
yZ
N
o]
—~ A
< > </N AN
Alprazolam 0308760300 C17H13CINg =~
Cl
H
| o0 o M
Ammonium Sulfate 0132140402 HsN,04S H—N—H sF |
| = H—MN—H
0o” N\
H+ D. |
H+
O—H
0
Aspirin 0180160401 CoHgO4 5
H“‘“o H
Atenolol 0226340403 C14H2oN,05 H
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Azithromycin 0748981405 CssH72N2015
Benzene 0078120000 CsHs
Benzyl Penicillin 0334390602 C16H18N204S
o]
\
Caffeine 0194190300 CgH1oN4O, " v
AL
M [a]
|
o \/\0/
Candoxatril 0515640702 CyoH41NO; 3 O N K\b
I
Carbamazepine 0236270101 C15H12NO C )N\ O
o N/H
!
Sodium Hydroxide 0039990101 HNaO H,D~“N
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Chloramphenicol 0323130503 C11H12C|2N205
0\H O\H
H H H
\ Lo
Cimetidine 0252340403 C10H16NgS S SCa
< [
N M
Cl
M
Clonidine 0230090102 CoHoCI>N3 /ﬂ\
M M
| \
Cl H H
Copper Sulfate 0159610400 CuO,S
Cyclosporine 1202611205 Ce2H111N11012
Desipramine 0266380201 CigH22N2
Dexamethasone 0392460603 CooHygFOs
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Diazepam 0284740200 C16H13CIN,O - O
N
10
o N
0
cl H 0
Diclofenac 0296150302 Cl4H11C|2N02 r|u H
Cl
5
Diltiazem-HCI 0414520600 CaoH2N>0,4S N’}_(\\@\/
N /
/ o O=—p
/
H\N/H
0\H
Doxorubicin 0543521206 Co7H29NO11
Enalaprilat 0376450602 CooH2sN,05
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Erythromycin 0733931405 C37He7NO13
Ethylene Glycol 0062070202 C,Hs0O,
Famotidine 0337450804 CgH15N705S;
Felodipine 0384250501 | C1gH19CIoNO4
Ferric Chloride 0162200000 ClF
Fluorouracil 0130080302 C4H3FN,0,
Flurbiprofen 0244260301 Ci5H13FO;
Formaldehyde 0030030100 CH,0
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Furosemide

0330740703

C12H11C|N205S

N e
Gabapentin 0171240302 CoH17NO H
0 ‘_‘\H
0
Glycerol 0092090303 C3HgO3 \)\/
H/O o -\\H
Hydrobromic Acid 0080910000 BrH
Hydrochloric Acid 0036460001 HCI
N
Hydrochlorothiazide 0297740703 | C7HgCIN30,4S; m
S ) S
Hydrofluoric Acid 0020010101 FH
Ibuprofen 0206280201 Ci3H1602 \\)\Q\)\
Imipramine 0280410200 C19H24N>
Isopropyl Alcohol 0060100101 C3HgO
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Itraconazole 0705630900 | CasHasCloNgOs Cldg O~ O~
Cl

8

'j:, O— . o )
Ketoconazole 0531430600 | CasHasCloN.Os %/j/ O

C|>_/

o

Ketoprofen 0254280301 C16H1403
Labetalol-HCI 0328410404 C19H24N,03
Lisinopril 0405490704 C21H31N305
Magnesium Sulfate 0120370400 MgQO,S
Mannitol 0182170606 CeH1406
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Methotrexate 0454441205 C20H22NgOs
Metoprolol 0267360402 Ci5H25NO3
Nadolol 0309400504 C17H27NO4
Naloxone 0327370502 C19H21NOy
Naproxen-sodium 0230260301 C14H1403
Nortriptylene-HCI 0263380101 Ci9H21NO4
Omeprazole 0345420601 C17H19N303S
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Phenytoin 0252270202 C15H12N202
(o] 5”40
Piroxicam 0331350702 C15H13N304S z
OKH
Potassium Bromide 0119000100 Brk
Potassium 0158030400 MnO,K
Permanganate
Prazosin 0383410801 C19H21N504
Propranolol-HCI 0259350302 C16H21NO,
Quinidine 0324430401 C20H24N202
Ranitidine-HCI 0314410702 C13H2N4O3S
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Silver Nitrate 0169870300 AgNO;
Sodium Thiosulfate 0158110400 Na,O3S,
Tenidap 0320760402 C]_4H9CIN203S
Terfenadine 0471690302 C3H41NO>
Testosterone 0288430201 Ci9H250,
Trovafloxacin 0416361002 Con15F3N403
.
H
/
0
Valproic-acid 0144220201 CgH160,
(o}
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Vinblastine 0810971203 CasHs5N409
Zinc Chloride 0136290000 ZnCl, GI”!EHHGI
Cl
Ziprasidone 0412940501 | CyHnCIN,OS | " N I\
o \_// —S
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Diseases

Due to the large number of diseases present in the CTD, the diseases were
combined into 27 groups based on the classifications used in the CTD. Rather than
associating each chemical with every associated disease, the chemicals were related to
the disease group that contained the actual associated disease. Each disease group was
assigned a number, 1-27, to represent that disease group in the network. Table 2 shows
the 27 diseases groups used in the network and the disease identification number assigned

to each group.
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Table 2: Disease Groupings

Disease Category

Disease Number

Animal Diseases

Bacterial Infections and Mycoses
Cardiovascular Diseases

Congenital, Hereditary, Neonatal Diseases and Abnormalities
Digestive System Discases

Environmental Disorders

Endocrine System Diseases

Eye Discases

Female Urogenital Diseases and Pregnancy Complications
Hemic and Lymphatic Diseases

[mmune System Diseses

Male Urogenital Diseases

Mental Disorders

Musculoskelatal Diseases

Neoplasms

Nervous System Diseases

Nutritional and Metabolic Diseases
Occupational Diseases

Otorhinolaryngologic Diseases

Parasitic Diseases

Pathological Conditions, Signs and Symptoms
Respiratory Tract Diseases

Skin and Connective Tissue Diseases
Stomatognathic Diseases

Substance-Related Disorders

Virus Diseases

Wounds and Injuries

O oo =1 O h s W b

00 R S R (6 T T T S e e i e i e e i i
=1 O h B W b = O ND O =] O Lh R W B = D
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Artificial Neural Network

Figure 2 shows an illustration of how the ANN operated for the MATLAB
simulations. The ANN took the input and output data for each chemical-disease
association and used the training function in the hidden layer to update the weights and
biases in an attempt to find patterns and correlations between the input and output data.
Based on the pre-determined values in the TVT ratio, the ANN would select the
designated amount of data to train the network with. After training, the ANN would then
validate the network with the designated amount of data, and finally test the network with
the remaining data. In Figure 2, the three output categories (species, dummy variable,
and disease) within the ANN represent the actual disease outputs obtained from the CTD.
The outputs on the outside of the ANN represent the outputs generated by the ANN
during the testing phase of each simulation. The code used in the network simulations

can be found in Appendix A.
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Artificial Neural Network

Inputs Hidden Layer Outputs
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Inputs e
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—___

)

Outputs

Disease
Group

Figure 2: Artificial Neural Network Example

Input and Output Data

Before running the network simulations in MATLAB, the data were first
formatted to fit the ANN requirements as defined by the MATLAB user guide. The input
and actual associated output data from the CTD were entered into two matrices created in
Microsoft Excel from which MATLAB was coded to retrieve the data. The input data
were entered into a matrix with three columns, one each for molecular weight, hydrogen
acceptors, and hydrogen donors. These three chemical characteristics were left as
individual data points for the input data, rather than being entered in one column as the
new classification number, to keep the size of the input and output matrices the same and
reduce the use of dummy variables. The output data were entered into a matrix the same
size as the input data matrix with columns for species, dummy variable, and disease

group. Species were given numbers, similar to the disease groups, and the species and
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their assigned numbers can be found in Table 3. The species number is specifically
related to the species that the chemical-disease association occurs in. For example,
acetone has a curated relationship with neoplasms (disease category 15) and this
chemical-disease association occurs in humans. A dummy variable was used in the
output matrix to keep the matrix the same size as the input data matrix. Zeros were
entered for the dummy column values and the dummy column was not used in any of the

results analysis.

Table 3: Species Table

Species |Species Number
Humans 1
Dogs 2
Fish 3
Birds 4
Eats/mice 5

The number of rows used for each chemical was determined by the number of
disease groups the chemical was associated with. For example, acetone was associated
with six diseases groups so it used six rows in both the input and output matrices. The
actual input and output data used for acetone can be seen in Table 4. The six rows used
in the input matrix all contained the same molecular weight, hydrogen acceptor, and
hydrogen donor data. Each of the six rows in the output matrix corresponded to one of
the associated disease groups and subsequent related species. The complete input and

output matrices can be found in Appendix B.
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Table 4: Acetone Input and Output Matrices

Inputs Outputs

Molecular Hydrogen | Hydrogen Disease
Weight Acceptors | Donors Species | Dummy | Group

58.08 1 1 1 0 9

58.08 1 1 1 0 12

58.08 1 1 1 0 15

58.08 1 1 1 0 16

58.08 1 1 1 0 17

58.08 1 1 1 0 25

Simulations

Three phases of simulations were used to test the ANN. The first phase of
simulation was accomplished to demonstrate that the MATLAB ANN could be used to
analyze the chemical and disease data and find appropriate correlations. Initially, 20
chemicals were chosen from the CTD and the input and output matrices were created
based on the chemical characteristics and associated species and diseases groups. This
simulation used the basic MATLAB ANN code formatted with a TVT ratio of 80-10-10
percent and the default training function. Results from the first phase simulation can be
found in Figures 3-9 in Chapter 4.

The second phase of simulations involved testing different TVT ratios and
training functions on the network which provided the best network performance. To do
this, an additional 55 chemicals were chosen at random from the CTD and the
appropriate chemical, species, and disease group data were added to the input and output
matrices. First, five different TVT ratios were tested in the network using the default

training function: 50-25-25, 60-20-20, 70-15-15, 80-10-10, and 90-5-5 percent. These
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five ratios were chosen so that an appropriate TVT ratio could be chosen while also
highlighting how the different ratios affect the ANN. Next, each of the 15 training
functions was tested in the network using the 70-15-15 percent TVT ratio. The
MATLAB training functions used are preprogrammed functions built within MATLAB.
All of the functions operated in a feedforward network with backpropagation. A feed
forward network is where the data is passed through the hidden layer in a single direction
from the input side to the output side. The backpropagation step involves going back to
adjust the weights and biases in the hidden layer after comparing the actual outputs to the
ANN derived outputs. Each of the training functions are based off of a gradient descent
algorithm where the training function attempts to decrease the error in the network by
adjusting the weights and biases after each network iteration. The results from the
different training ratios indicated that the trainlm, Levenberg-Marquardt
backpropagation, function generated the best network performance.

The third phase of simulations involved inputting uncurated chemical data into
the network that had no known disease associations to see what diseases the network
would predict. To accomplish this, a network simulation was first run with the original
75 chemicals using the 70-15-15 percent TVT ratio and trainlm training function. The
70-15-15 percent TV ratio and trainlm training function provided the best network
performance in the second phase of simulations. This established the correlations,
weights, and biases for the network to use on the uncurated chemicals. Then the data for
three uncurated chemicals were run through the network 10 times and the network-

derived disease output results for each trial were recorded. Each uncurated chemical was
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input into the network 10 times to allow multiple disease association predictions to occur
in the event that a chemical was associated to more than one disease. The network
outputs generated had to be rounded to directly correlate them to the whole number
designators assigned to each disease group. Several network outputs produced the same
disease group more than once for a given input chemical. For duplicate disease
predictions, these outputs were consolidated into one output. The derived disease outputs

were then compared to research literature to see if the network predictions were correct.

Analysis and Results

Once the simulations were complete in MATLAB, all of the output data was
copied into Microsoft Excel for analysis. Analyzing the first phase of simulations was
done simply by reviewing the output plots and figures generated by MATLAB at the
completion of the simulation. The analyses of the phase two simulations used Microsoft
Excel to plot and chart the output data from MATLAB. The primary graph used plotted
the actual diseases values versus the ANN derived disease values. When the network
produced accurate output results, the plot would follow a linear, one-to-one slope on the
graph. Excel was also used to calculate the coefficient of determination (R?) values to
see how well the data followed a linear progression. The analysis also compared the
different TVT ratios and training functions based on network parameter values to
determine which ratio or function provided the best network performance. Additionally,
the effects of undertraining and overtraining the network on ANN derived disease values

were taken into account. The third phase of simulations was primarily analyzed by
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comparing the ANN derived disease values to research literature in an effort to show that

the network had some predictive capability for uncurated chemicals.
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V. Analysis and Results

ANN Training Results

The following figures were generated from a typical MATLAB ANN simulation
using the default training settings and a TVT ratio of 80-10-10 percent. They show
typical results seen during the first phase of simulations when the initial group on 20
chemicals was used in the ANN.

Figure 3 shows a typical MATLAB training session for an ANN. The neural
network diagram shows a pictorial of how the network will function, given the
requirements established in the network code. At the top of the figure, the diagrams
shows the number of inputs and outputs being used and the number of hidden layers. The
data division and derivative algorithms are preset within MATLAB and these default
settings were used for the various simulations. The training algorithm defines the training
function used in the network, which dictates how the data will be trained. The
performance algorithm measures how well the network is operating during training. The
training and performance algorithms can be changed separately; however, a default
performance algorithm will be chosen based on the training algorithm if a specific

performance algorithm is not defined.
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Meural Network

1 1173
Algorithms
Data Division: Random (dividerand)
Training: Levenberg-Marquardt (trainim)

Perforrmance: Mean Squared Error  (mis=)
Derivative: Default (defaultderiv)

Progress

Epoch: 0 16 iterations 1000
Timne: 0:03:55
Performance: 100 [T | 0.0

Gradient: 150 1.00e-05
[T 000100 1.00e-08 1.00e+10
Validation Checks: 0 | 0 6
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Plot Interval: D : - 1epochs
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Figure 3: Typical MATLAB ANN Training Session
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The progress portion of Figure 3 shows the network performance criteria that
provide information on the progress of network training. As the simulation progresses,
these performance criteria update to show the current status of the training. The epochs
show the number of iterations over the course of the simulation. Performance shows how
accurately the network is generating output values compared to the actual output values.
The performance values are the mean-squared error of the network so lower performance
values indicate higher network training performance. The gradient is an optimization
algorithm that measures the adjustments made to the network in relation to the network
performance during each epoch. If a network is performing well, smaller adjustments are
needed so the gradient will be smaller. Likewise, if a network is performing poorly,
larger adjustments are needed to attempt to improve performance so the gradient will be
larger. The mu value shows how much the network is required to change the weights and
biases placed on the input data to achieve accurate output results. The weights and biases
are used to adjust and determine how the input data is used when training the network. If
the network finds some input data provides better performance than other data, it will
place more weight on the data that increases performance. When a network has high mu
values during training, the network is struggling to find weight and bias values that work
for the data set. The validation checks show the number of iterations where the
simulation’s validation performance does not decrease. After the network is trained, it is
validated to ensure the training was successful.

All of these performance criteria have upper and lower boundaries and when the

appropriate boundary of one of the criteria is reached, the simulation is terminated.
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Performance and gradient will both terminate the simulation when they reach their lower
limit values. If performance or gradient terminate the simulation, this generally indicates
a successful training because lower performance and gradient values correlate to higher
network performance. Epochs, mu and validation checks will terminate the simulation
when they reach their upper limits. When the number of epochs terminates the
simulation, the network has used all of the allotted iterations before the performance or
gradient have reached an acceptable level. Network termination due to a high mu value
indicates that the network failed to find appropriate weight and bias values. Terminating
for a high number of validation checks indicates the network did not train well because it
was unable to be validated. Time is the only criterion that does not terminate a simulation
as it is simply meant to track how long the simulation takes. Once the network training is
complete, there are several figures that MATLAB can create which provide additional
information about the network simulation. Figures 4-9 show the different plots that can
be generated by MATLAB after the network simulations. Additional training sessions
and supporting figures can be found in Appendix C.

Figure 4 shows a typical MATLAB-generated plot of the actual disease numbers
plotted against the ANN derived disease. When the plot shows a straight, positive, one to
one slope, the ANN derived disease number is close to the actual disease number. The
straight, one to one slope seen in the figure suggests that the network was able to

correctly derive the appropriate disease number for each chemical.
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Figure 4: Typical MATLAB Actual Disease versus ANN Derived Disease Outputs
Plot

Figures 5 and 6 show the performance (i.e. mean squared error) of the ANN
simulation discussed from Figure 3. The two plots look identical because the network
used the mean squared error to judge the performance of the network as it was trained.
The lower the performance value, or mean squared error value, the better the network is
performing because they is less variation between the actual disease groups numbers and
the ANN derived disease group numbers. The figures show the performance of the

network for each epoch during the simulation. During the simul